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Abstract. We study mixed site-bond directed percolation on 2D and 3p lattices by using time-
dependent simulations. Our results are compared with rigorous bounds recently obtained by
Liggett and by Katori and Tsukahara. The critical fractions pS;,, and pf ., of sites and bonds
are extremely well approximated by a relationship reporied earlier for isctropic percolation,
{og pt,../log Pf;;; +logpl ../ log i 4 = 1), where p_f;e and pg_;nd are the critical fractions
in pure site and bond directed percolation,

The mixed site-bond percolation is a natural extension of the ordinary bond percolation and
site percolation models. The model is defined by opening sites of a lattice with probability
Dsie and bonds with probability ppong, clusters are defined as combinations of open sites
connected by open bonds. The system is percolating in a region of pyy. and ppoqq values
in which an infinite cluster exists.

The mixed site-bond percolation is a natural mode! for physical phenomena in randomly
restricted media (accounted for by closed sites) with random iterations (accounted for by -
open and closed bonds). Introduced by Reynolds er al [1], it was used in treating polymer
gelation, capillary phenomena and in fracture theory (see [2] and references therein).

Current work is concerned with the directed version of the mixed site-bond percolation
model (figure 1), first introduced by Kinzel [3, 4], in which bonds can only be open in a
certain direction, physically it can be accounted for by the existence of an external field,
restricting interactions allowed in the system (as in the case of transport of particles in
porous media, induced by an external electrical field), or it could also be applied to time-
dependent phenomena, when movement in a chosen direction corresponds to development
in time (see [4-6]).

Both pure bond and pure site directed percolation are known to belong to the same
universality class known as DP (directed percolation)} universality class. The DP universality
class is known to be very robust; with a few exceptions all dynamical particle systems
involving extinction-survival transition belong to the DP universality class (see [7, 8] and
references therein). The mixed directed side-bond percolation should be expected to belong
to the DP universality, although no numerical check to confirm it has ever been conducted.

Recently, Katori and Tsukahara [9] proposed a lower boundary for the phase transition
line formed by pi. and ppong values, at which the percolation transition takes place in the
case of mixed directed percolation in 11 dimensions. On the other hand, exact upper and
lower bounds for the phase transition line in 14 1 dimensions have been recently proposed
by Liggett [10].
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Figure 1. Mixed directed site-bond percolation in 1 41

& dimensions. Percolation is allowed in directions indicated

® )(V by the arrows. One can clearly see a finite cluster,
/\ /\ A

consisting of nine sites, connected to the origin.

Based on a heuristic argument, Yanuka and Englman [2] proposed an interpolation
formula for the phase transition line for ordinary (non-directed) mixed site-bond percolation
in any dimension, allowing us to calculate the phase diagram for the mixed percolation from
the critical fractions p¢,, and pf, , for pure site and pure bond percolation, corresponding
to the endpoints of the diagram. Because of the random spread on-data, the Monte Carlo
results for the intermediate region reported by the same authors (for a number of lattices
in 2D and 3D) do not allow us to see any systematic difference from the phase transition
line given by the formula, so that the precision of the critical line given by the formula is
unclear.

The principal aim of the current work is the evaluation of the phase transition line for
the directed mixed site-bond percolation in 1 4+ 1 and in 2 4 1 dimensions using Monte
Carlo simulations. For 1+ 1 dimensions we confirm the validity of upper and lower bounds
suggested by Katori and Tsukahara [9] and by Liggett [10], and, for both 1 + 1 and 2+ 1
dimensions, show that an interpolation formula, similar to the one suggested by Yanuka
and Englman [2} for the ordinary mixed site-bond percolation, is applicable with high
precision, although we are able to detect small systematic deviations. The time-dependent
simulation approach used in the current work allows, simultaneously with the transition
line, the evaluation of dynamical critical exponents for the mixed directed percolation. Qur
results imply that, not surprisingly, the mixed case belongs to the same universality class
to which both pure bond and pure site directed percolation belong.

To decide the critical line, we use a time-dependent simulation [11]. Mixed directed
percolation is regarded as a growth process, starting from a single site, the ‘origin’. For
1 + 1 dimensions, space and time are defined as coordinates of sites on a square lattice
perpendicular and parallel to the (1, 1) diagonal, and growth clusters are formed by sites
that can be reached from the origin moving through open sites and bonds in the positive
time direction (see figure 1). Similarly, for the 2 4+ 1 case we consider growth on a simple
cubic lattice with time axis directed along the (1, 1, 1) diagonal. This kind of growth can
be realized by updating states of sites of a triangular lattice (see [12] for a discussion of
the technique)., We calculated the survival probability P(r) as the fraction of realizations
containing sites connected to the origin at time ¢ (realizations, surviving at time ¢); the
average number of sites connected to the origin at time 7, #(t), averaged over all realizations;
and the average square radius R*(¢), averaged over surviving realizations. On the critical
line, for large enough ¢, it is expected that these quantities are governed by power laws

P oct™ n(t) o1 R*(t) x £%. : )

The results of the time-dependent simulation are most conveniently represented as local
slopes data (see [11] for a detailed description), for example, for the number of sites
connected to the origin we plot n{(f) = In{n()/nt/m)])/ In[m] against 1/¢, taking m = 7.
For pgre and ppo.qs on the critical line the true n value is given by the intersection of the
local slopes curve with ordinata, while in off-critical simulation the local slopes curves



Critical behaviour for directed percolation 3987

0.37 T T i T 1
0.36 | 1 1
0.35 | ‘ . 7
M
0.34 Ny
T}(t) 0.33 2 T -

M~ . Figure 2. 141 dimensions, local slopes for the
0.32 - ‘5\"“'\\-\\\“\:\\{ mean number of sites connected to the origin
01 L : "‘&'\\\\\‘J\\\\;\“-‘J‘;’ at different values of pyire. Phona = 1 for all
. o .w‘“\'\\\“\.‘ curves. Line shows the DP value of the exponent
03 4 ‘i\‘\‘l’&\"-‘ﬁ;\\‘\"‘\‘\‘l 7, taken frulr{ [71. () Psire = 0.706 522 (critical
5 N value according to [141), (i} puye = 0.7057,
0.29 L 1 L : L (iif)} psire = 0.705489 (critical value according

0 0.0005 0.001 0.{){/]%5 0.002 0.0025 0.003 o {13)), (V) Psise = 0.7053, (¥) Pyire = 0.7051.

Table 1. Critical line in 1 + 1 dimensions, Monte Carlo results,

pgand D fn‘ re

0644701 1

0.7 0.93585

0.75 0.88565

0.8 (.84135

0.85 0.80190

09 076645 .
0.95 0.734 50 -

1 0.705 489

# Values for ordinary directed percolation are taken from {15, 13}

diverge for small 1/¢. Survival probability P and the mean-square radius R are treated in
a similar way. Although the local slopes curves for R are quite insensitive to a change in
Psire and Ppong values and thus less useful in determining the critical line than in the cases
of n and P, we used the mean square radius data to check the consistency of our simulation
and to estimate the z values.

An example of local slopes curves for time dependent simulation is given in figure 2.
The data corresponds to pure site directed percolation, and allows us to support the critical
~ point value provided by Onody and Neves [13] using series technique as opposed to the
result obtained by ben-Avraham er al [14] using the transfer matrix technique. We only
show the Jocal slopes curves for the mean number of sites connected to the origin. Here, and
in the rest of the current work, we take 1000 steps and we average over 10° configurations.
The result strongly implies that the the critical value obtained by Onody and Neves is.
correct, while the value provided by ben-Avraham er al [14] seems to be off the critical
point by more than the error margin, given in [14],

The overall results are given in table 1 and in table 2, all pj_, values given have an
uncertainty of £0.0002. The uncertainty has been determined by making sure that the local
slopes curves for n and P, taken at pp,.g value, shifted from the one provided in tables 1
and 2 by the value of the error margin, clearly diverge as 1/¢ approaches zero.

Repeating the argument proposed by Yanuka and Englman [2] in the case of mixed
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Table 2. Critical line in 2 4 1 dimensions, for a simple cubic lattice. Monte Carlo results,

pgand p:ire
0.38216° 1

0.45 0.86410
05 0,78725
0.6 067115
0.7 0.58770
0.8 0.524 60
0.9 047510
1 0.43525%

2 Values for ordinary directed percolation are taken from [12].
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Figure 3. Critical linein 141 dimensfons. Monte Carlo  Figure 4, Critical line in 2-+1 dimensions, for a simple
results are shown as points. (i} The critical line given  cubic lattice.

by (2). (i) The lower bound by Katori and Tsukahara

[91, given as a solution of a?f* — B + 208 = 1

with @ = pf;,, and § = pf,,,. (iii} The upper and

lower bounds by Liggett [10], given by o = 252 and

a= E@g—'ﬁ' respectively.

directed percolation, we have

18 Pie . 198 Phona _
log p&,, 0B Pioy

where log pf,, and log pg,, , are the critical fractions of bonds and sites in pure bond and
site directed percolation,

We compare the critical line given by (2) with our Monte Carlo results in figures 3 and
4. The formula works surprisingly well, although if the difference between the interpolation
formuia prediction and the simulation results is plotied separately, as is done in figure 5, one
can see that it cannot be explained by the flaws of the Monte Carlo simulation. Error bars,
given in figure 5, are calculated as a combination of the uncertainty of the interpolation
formula prediction due to the uncertainty of the threshold values for pure DP cases and
of the emor in ppanz values, obtained in our simulations. The critical values for pure DP
cases were taken as pf;,, = 0.705489 £ 0.000004 [13] and pf,,, = 0.644 701 = 0.000001
[15] in 1 + 1 dimensions, and for 2 4+ 1 dimensions we used the values obtained by [12],

@
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Figure 5. The difference between the predictions of (2) and the Monte Carlo results. Crosses
indicate the uncertainty. (a) 1+ 1 dimensions. (5) 2 4+ 1 dimensions, simple cubic lattice.

Py, = 0.43525+0.00013 and pf, , = 0.38216 & 0.00006.

Apart from the interpolation formula, in figure 3 we compare the Monte Carlo results
with exact boundaries for 141 mixed directed percolation, proposed by Katori and Tsukahara
and by Liggett. Clearly, our results are in agreement with the bounds, presumed to be exact.

Concerning the universality of mixed site-bond directed percolation, both in 1 + 1
dimensions and in 241 dimensions, the dynamical exponents &, i and #, obtained in our time-
dependent simulations, were in agreement with the known DP values. For 1--1 dimensions,
taking the DP exponents values given in [7], the error margins, estimated by analysing the
spread of the local slopes data, were given as 8 = (.162 4= 0.005, » = 0.308 = 0.005 and
z = 1.263 £ 0.010. For 2 + 1 dimensions, using the DP exponents values from [12], the
error margins were given as § = 0.460=0.020, 5 = 0.214 £ 0.025 and z = 1.134 - 0.010.
Thus, our results jindicate that mixed directed percolation in 1+ 1 dimensions and in 2+ 1
dimensions belongs to the corresponding DP universality classes.

Concluding the results of our work, we would like to note that the interpolation formula
suggested by Yanuka and Englman [2] for the ordinary mixed site-bond percolation works
surprisingly accurately in the case of the directed mixed site-bond percolation as well.
Nonetheless, the accuracy of our Monte Carlo results allows us to show a systematic
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difference. Our results in 1 4 1 dimensions are in agreement with exact bounds suggested
by Katori and Tsukahara [9] and by Liggett [10]. ¥ the interpolation formula could be
proven to be an upper boundary for the critical line as our results suggest, it would be a
much closer bound than the Liggett's bound, the best available so far.
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