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Critical behaviour for mixed site-bond directed percolation 
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Abstrad. We study mixed sitebond duemed perwlation on w and 30 lattices by using time- 
dependent simulations. Our results are compared with rigorous bounds recently obtained by 
LiSgett and by Katori and Tsukahara. The critical fractions pzi,, and piond of sites and bonds 
M extremely well approximated by a relationship reported earlier for isotropic percolation. 
Oogp:;,,/logp$,e +logp;md/logp&d = 1). where P:,:~ and pbnd are the critical fractions 
in pure site and bond directed percolation. 

The mixed sitebond percolation is a natural extension of the ordinary bond percolation and 
site percolation models. The model is defined by opening sites of a lattice with probability 
~prire and bonds with probability pbond, clusters are defined as combinations of open sites 
connected by open bonds. The system is percolating in a region of p,irc and pbod values 
in which an infinite cluster exists. 

The mixed sitebond percolation is a natural model for physical phenomena in randomly 
restricted media (accounted for by closed sites) with random iterations (accounted for by 
open and closed bonds). Introduced by Reynolds et al [l], it was used in Fating polymer 
gelation, capillary phenomena and in fracture theory (see [2] and references therein). 

Current work is concerned with the directed version of the mixed site-bond percolation 
model (figure 1). first introduced by Kinzel [3, 41, in which bonds can only be open in a 
certain direction, physically it can be accounted for by the existence of an external field, 
restricting interactions allowed in the system (as in the case of transport of particles in 
 porous^ media, induced by an external electrical field), or it could also be applied to time- 
dependent phenomena, when movement in a chosen direction corresponds to development 
in time (see r4-61). 

Both pure bond and pure site directed percolation are known to belong to the same 
universality class known as DP (directed percolation) universality class. The DP universality 
class is known to be very robust; with a few exceptions all dynamical particle systems 
involving extinction-survival transition belong to the DP universality class (see [7, 81 and 
references therein). The mixed directed sidebond percolation should be expected to belong 
to the DP universality, although no numerical check to confirm it has ever been conducted. 

Recently, Katori and Tsukahara [9] proposed a lower boundary for the phase transition 
line foimed by psile and pbond values, at which the percolation transition takes place in the 
case of mixed directed percolation in 1 + 1 dimensions. On the other hand, exact upper and 
lower bounds for the phase transition line in 1 + 1 dimensions have been recently proposed 
by tiggett [lo]. 
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Figure 1. Mixed directed site-bond percolation in 1 + 1 
dimensions. Percolation is allowed in directions indicated 
by the arrows. One can clearly see a finite cluster. 
consishng of nine sites. connected to the origin. . .  . . 

Based on a heuristic argument, Yanpka and Englman [2] proposed an interpolation 
formula for the phase transition line for ordinary (non-directed) mixed site-bond percolation 
in any dimension, allowing us to calculate the phase diagram for the mixed percolation from 
the critical fractions p;ire and p& for pure site and pure bond percolation, corresponding 
to the endpoints of the diagram. Because of the random spread on-data, the Monte Carlo 
results for the intermediate region reported by the same authors (for a number of lattices 
in 2D and 3D) do not allow us to see any systematic difference from the phase transition 
line given by the formula, so that the precision of the critical line given by the formula is 
unclear. 

The principal aim of the current work is the evaluation of the phase transition line for 
the directed mixed site-bond percolation in 1 + 1 and in 2 + 1 dimensions using Monte 
Carlo simulations. For 1 + 1 dimensions we confirm the validity of upper and lower bounds 
suggested by Katori and Tsukahara 191 and by Liggett [lo], and, for both 1 + 1 and 2 + 1 
dimensions, show that an interpolation formula, similar to the one suggested by Yanuka 
and Englman [2] for the ordinary mixed sitebond percolation, is applicable with high 
precision, although we are able to detect small systematic deviations. The time-dependent 
simulation approach used in the current work allows, simultaneously with the transition 
line, the evaluation of dynamical critical exponents for the mixed directed percolation. Our 
results imply that, not surprisingly, the mixed case belongs to the same universality class 
to which both pure bond and pure site directed percolation belong. 

To decide the critical line, we use a timedependent simulation [ l l ] .  Mixed directed 
percolation is regarded as a growth process, starting from a single site, the 'origin'. For 
1 + 1 dimensions, space and time are defined as coordinates of sites on a square lattice 
perpendicular and parallel to the (1, 1) diagonal, and growth clusters are formed by sites 
that can be reached from the origin moving through open sites and bonds in the positive 
time direction (see figure 1). Similarly, for the 2 + 1 case we consider growth on a simple 
cubic lattice with time axis directed along the (1,1,1) diagonal. This kind of growth can 
be realized by updating states of sites of a triangular lattice (see [12] for a discussion of 
the technique)., We calculated the survival probability P ( t )  as the fraction of realizations 
containing sites connected to the origin at time f (realizations, surviving at time t);  the 
average number of sites connected to the origin at timet, n( t ) ,  averaged over all realizations; 
and the average square radius Rz(t) ,  averaged over surviving realizations. On the critical 
line, for large enough f, it is expected that these quantities are govemed by power laws 

~ ( t )  o( r-' n(t)  cx 19 ~ ' ( t )  cx t z  . (1) 
The results of the time-dependent simulation are most conveniently represented as local 

slopes data (see [ l l ]  for a detailed-description), for example, for the number of sites 
connected to the origin we plot q(t)  In[n(t)/n(t/m)]/ln[m] against l /t ,  taking m = 7. 
For psirr and phnd on the critical line the hue q value is given by the intersection of the 
local slopes curve with ordinata, while in off-critical simulation the local slopes curves 
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Figure 2. 1+ 1 dimensions, local dopes for the 
mean number of sites connected to the origin 
at different values of p,jrr. pbmd = 1 for all 
curves. Line shows the DP value of the exponent 
1. raken from 171. (i) psirr = 0.706522 (mitical 
value according to [141). (U) p3jII = 0.7057. 
( i i )  psitc = 0.705489 (critical value according 
to 1131). (iv) pJjrr = 0.7053, (v) psir. = 0.7051. 

Table 1. Critical line in 1 + I  dimensions, Monte Carlo results. 

PL"d P L  
0.644701' 1 
0.7 0.935 85 
0.75 0.885 65 
0.8 0.841 35 
0.85 0.801 90 
0.9 0.76645 
0.95 0.73450 
1 0.705489r 

Valuer for ordinary direcred percolalion are taken fmm [15. 131. 

diverge for small l/t .  Survival probability P and the mean-square radius R are treated in 
a similar way. Although the local slopes curves for R are quite insensitive to a change in 
psitr and Pbond values and thus less useful in determining the critical line than in the cases 
of n and P, we used the mean square radius data to check the consistency of our simulation 
and to estimate the z values. 

An example of local slopes curves for time dependent simulation is given in figure 2. 
The data corresponds to pure site directed percolation, and allows us to support the critical 
point value provided by Onody and Neves [13] using series technique as opposed to the 
result obtained by ben-Avraham el nl 1141 using the transfer matrix technique. We only 
show the local slopes curves for the mean number of sites connected to the origin. Here, and 
in the rest of the current work, we take 1000 steps and we average over lo5 configurations. 
The result strongly implies that the the critical value obtained by Onody and Neves is 
correct, while the value provided by b e n - A d a m  et al [14] seems to be off the critical 
point by more than the error margin, given in 1141. 

The overall results are given in table 1 and in table 2, all pLnd values given have an 
uncertainty of f0.0002. The uncertainty has been determined by making sure that the local 
slopes curves for n and P ,  taken at Pbond value, shifted from the one provided in tables 1 
and 2 by the value of the error margin, clearly diverge as I / t  approaches zero. 

Repeating the argument proposed by Yanuka and Englman [2] in the case of mixed 
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Table 2. Critical line in 2 + 1 dimensions, for a simple cubic lauice. Monte Carlo results. 

&d d,, 
0.382W 1 
0.45 0.864 IO 
0.5 0,78725 
0.6 0.671 15 
0.7 0.58770 
0.8 0.52460 
0.9 0.475 IO 
1 0.435 25' 

Values for ordinq directed percolation are Qken from [I21 

t 1 
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Figure 3. Critical line in 1 +I dimensions. Monte Carlo 
results are shown as points. (i) The critical line given 
by (2). (ii) The lower bound by Katori and Tsukahara 
[9]. given as a solution of a3p - up2 +Zap = 1 
with a = piirc and = pimd. (iii) The upper and 
lower bounds by Liggett [IO]. given by a = and 
a = A, respectively. 

directed percolation, we have 

Figure 4. Critical line in 2+1 dimensions, for a simple 
cubic lattice. 

where log and are the critical fractions of bonds and sites in pure bond and 
site directed percolation. 

We compare the critical line given by (2) with our Monte Carlo results in figures 3 and 
4. The formula works surprisingly well, although if the difference between the interpolation 
formula prediction and the simulation results is plotted separately, as is done in figure 5, one 
can see that it cannot be explained by the flaws of the Monte Carlo simulation. Error bars, 
given in figure 5, are calculated as a combination of the uncertainty of the interpolation 
formula prediction due to the uncertainty of the threshold values for pure DP cases and 
of the error in P h n d  values, obtained in ow simdations. The critical values for pure DP 
cases were taken as = 0.705489zt0.000004 [13] and pcnd = 0.644701 ItO.000001 
[I51 in 1 + 1 dimensions, and for 2 + 1 dimensions we used the values obtained by [12], 
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Figure 5. The difference between the predictions of (2) and the Monte Carlo results. Crosses 
indicate the uncertainty. (a)  1 t 1 dimensions. (6) 2 + 1 dimensions, simple cubic latiice. 

p;ite = 0.435 25 5 0,000 13 and pgnd = 0.382 16 f 0.00006. 
Apart from the interpolation formula, in figure 3 we compare the Monte Carlo results 

with exact boundaries for 1+1 mixed directed percolation, proposed by Katori and Tsukahara 
and by Liggett. Clearly, our results are in agreement with the bounds, presumed to be exact. 

Concerning the universality of mixed sitebond directed percolation, both in 1 + 1 
dimensions and in 2+1 dimensions, the dynamical exponents 8, t) and t ,  obtained in OUT time- 
dependent simulations, were in agreement with the known DP values. For 1 + 1 dimensions, 
taking the DP exponents values given in [7], the error margins, estimated by analysing the 
spread of the local slopes data, were given as 6 = 0.162 rt 0.005, t) = 0.308 & 0.005 and 
z = 1.263 f 0.010. For 2 + 1 dimensions, using the DP exponents values from [12], the 
error margins were given as S = 0.460 f 0.020, t) = 0.214 f 0.025 and z = 1.134 f 0.010. 
Thus, our results indicate that mixed directed percolation in 1 + 1 dimensions and in 2 + 1 
dimensions belongs to the corresponding DP universality classes. 

Concluding the results of our work, we would like, to note that the interpolation formula 
suggested by Yanuka and Englman [2]  for the ordinary mixed site-bond percolation works 
surprisingly accurately in the case of the directed mixed site-bond percolation as well. 
Nonetheless, the accuracy of our Monte Carlo results allows us to show a systematic 
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difference. Our results in 1 + 1 dimensions are in agreement with exact bounds suggested 
by Katori and Tsukahara [9] and by Liggett [lo]. If the interpolation formula could be 
proven to be an upper boundary for the critical line as our results suggest, it would be a 
much closer bound than the Liggett’s bound, the best available so far. 

A Yu Tretyakov and N lnui 
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